[Special liveries] WOW Air A321-200 'Freyja'


The Air Operator Certificate (AOC)

An air operator's certificate (AOC) is the approval granted by a national aviation authority (NAA) to an aircraft operator to allow it to use aircraft for commercial purposes. This requires the operator to have personnel, assets and system in place to ensure the safety of its employees and the general public. The certificate will list the aircraft types and registrations to be used, for what purpose and in what area - specific airports or geographic region.

The requirements for obtaining an AOC vary from country to country, but are generally defined as:
  • Sufficient personnel with the required experience for the type of operations requested,
  • Airworthy aircraft, suitable for the type of operations requested,
  • Acceptable systems for the training of crew and the operation of the aircraft (Operations Manual)
  • A quality system to ensure that all applicable regulations are followed,
  • The appointment of key accountable staff, who are responsible for specific safety critical functions such as training, maintenance and operations,
  • Carriers Liability Insurance (for Airlines) - Operators are to have sufficient insurance to cover the injury or death of any passenger carried.
  • Proof that the operator has sufficient finances to fund the operation
  • The operator has sufficient ground infrastructure, or arrangements for the supply of sufficient infrastructure, to support its operations into the ports requested.
  • The certificate is held by a legal person who resides in the country or region of application (for EASA)

Icelandair's Operations Specifications ("subject to the approved conditions in the Operations Manual") issued by the Icelandic Transport Authority (Samgöngustofa) in 2014:


Source:
http://en.wikipedia.org/wiki/Air_operator%27s_certificate
http://caa.is

[Special liveries] Brussels Airlines A320-200 'Rackham'


Aircraft Owner's and Operator's Guide: B747-200/-300

Source:
Aicraft Commerce (2005 June-July)

[Featured spotter] Sam Chui air-to-air photography from LAX

Aer Lingus A330-200 // EI-LAX
Southwest Airlines B737
United Airlines A320-200 // N403UA
Emirates B777-200LR // A6-EWC
China Eastern Airlines A340-600 // B-6055
Delta Airlines B777-200 // N865DA
Korean Air A380-800 // HL7612
Air Canada A320-200 // C-FNNA
Cathay Pacific B747-400 // 9V-SPD
Virgin Atlantic B747-400 // G-VHOT
British Aiways B747-400 // G-BNLK
Nippon Cargo Airlines B747-200F(SCD) // JA8181
Japan Airlines B747-400 // JA8085
KLM B747-400 // PH-BFL
Singapore Airlines B747-400 // 9V-SPO
Lufthansa B747-400 // D-ABVH
Delta Airlines B747-400 // N676NW
United Airlines B747-400 // N121UA

PA 845



Pan Am Flight 845 was a Boeing 747-121, registration N747PA, operating as a scheduled international passenger flight between Los Angeles, CA and Tokyo, with an intermediate stop at San Francisco International Airport (SFO/KSFO). On July 30, 1971, at 15:29 PDT, while taking off from San Francisco bound for Tokyo, the aircraft struck approach lighting system structures located past the end of the runway, seriously injuring two passengers and sustaining significant damage. The crew continued the takeoff, flying out over the ocean and circling while dumping fuel, eventually returning for a landing in San Francisco. After coming to a stop, the crew ordered an emergency evacuation, during which 27 passengers were injured while exiting the aircraft, with eight of them suffering serious back injuries. The accident was investigated by the NTSB, which determined the probable cause was the pilot's use of incorrect takeoff reference speeds. The NTSB also found various procedural failures in the dissemination and retrieval of flight safety information, which contributed to the accident.


Aircraft and crew

In good shape again some time after 1975
The Boeing 747-121, registration N747PA, manufacturing serial number 19639, first flew on April 11, 1969 and was delivered to Pan Am on October 3, 1970. She was the third 747 off Boeing's production line but wasn't delivered until nearly ten months after Pan Am's first 747 flight. Originally named Clipper America it had logged 2,900 hours of operation at the time of the accident.

The flight crew of Flight 845 consisted of five Crew (a captain, a first officer, a flight engineer, a relief flight engineer and a relief pilot). The captain was Calvin Y. Dyer, a 57-year old resident of Redwood City, California, a pilot with 27,209 hours flying experience, 868 of which were on the 747. The first officer was Paul E. Oakes, a 41-year old resident of Reno Nevada, with 10,568 hours experience, 595 on the 747. The flight engineer was Winfree Horne, he was 57-years old and from Los Altos, California, he had 23,569 hours flight experience, 168 on the 747. Second officer Wayne E. Sagar was the relief pilot he had 3,230 hours of flight experience, 456 on the 747. The relief flight engineer was Roderic E. Proctor, a 57-year old resident of Palo Alto, California, he had 24,576 flight hours, 236 on the 747.

On July 29 1971, Dyer, Oakes, Horne, Sagar and Proctor had spent the whole day off-duty. They had also flown the initial Los Angeles to San Francisco leg of the flight.


Accident history

Robust approach lighting system along the end of RWY 01R
Flight 845's crew had planned and calculated their takeoff for runway 28L, but discovered only after pushback that this runway had been closed hours earlier for maintenance, and that the first 1,000 feet (300 m) of runway 01R, the preferential runway at that time, had also been closed. After consulting with Pan Am flight controllers and the control tower, the crew decided to take off from runway 01R, shorter compared to 28L, with less favorable wind conditions.

Runway 01R was about 8,500 feet (2,600 m) long from its displaced threshold (from which point the takeoff was to start) to the end, which was the available takeoff length for Flight 845. Because of various misunderstandings, the flight crew was erroneously informed the available takeoff length from the displaced threshold was 9,500 feet (2,900 m), a thousand feet longer than actually existed. Despite the shorter length, it was later determined that the aircraft could have taken off safely, had the proper procedures been followed.

As the crew prepared for takeoff on the shorter runway, they selected 20 degrees of flaps instead of their originally planned 10 degree setting, but did not recalculate their takeoff reference speeds (V1, Vr and V2), which had been calculated for the lower flap setting, and were thus too high for their actual takeoff configuration. Consequently these critical speeds were called late and the aircraft's takeoff roll was abnormally prolonged. In fact the first officer called Vr at 160 knots (300 km/h) instead of the planned 164 knots (304 km/h) because the end of the runway was "coming up at a very rapid speed."


Damage

Severe but economically repairable damage
Unable to attain sufficient altitude to clear obstructions at the end of the runway, the aircraft's aft fuselage, landing gear and other structures were damaged as it struck components of the approach lighting system (ALS) at over 160 knots (300 km/h). Three lengths of angle iron up to 17 ft long (5.2 m) penetrated the cabin, injuring two passengers. The right main under-body landing gear was forced up and into the fuselage, and the left under-body landing gear was ripped loose and remained dangling beneath the aircraft. Other systems damaged in the impact included Nos 1, 3 and 4 hydraulic systems, several wing and empennage control surfaces and their mechanisms, electrical systems including the antiskid control, and three of the evacuation slides.

The flight proceeded out over the Pacific Ocean for 1 hour and 42 minutes to dump fuel in order to reduce weight for an emergency landing. During this time, damage to the aircraft was assessed and the injured treated by doctors on the passenger list. After dumping fuel, the aircraft returned to the airport. Emergency services were deployed and the plane landed on runway 28R. During landing, six tires on the under-wing landing gear failed. Reverse thrust functioned only on engine 4, so the aircraft slowly veered to the right, off the runway and came to a stop. There was no fire, though a film taken of the landing showed brief flames from the area of the left under-wing landing gear. After stopping, the aircraft slowly tilted backwards due to the missing body gear, which had been ripped off or disabled on takeoff. The aircraft came to rest on its tail with its nose elevated. Until this accident it was not known that the 747 would tilt backwards without the support of the main body gear.


Injuries

There were no fatalities among the 218 passengers and crew aboard, but two passengers were seriously injured during the impact, and during the subsequent emergency evacuation twenty-seven more sustained injuries, eight of them serious.

Rods of angle iron from the ALS structure penetrated the passenger compartment, injuring passengers in seats 47G (near amputation of left leg below the knee) and 48G (severe laceration and crushing of left upper arm).

After landing, the aircraft veered off the runway on its damaged landing gear and came to a halt. Evacuation commenced from the front due to a failure to broadcast the evacuation order over the cabin address system (it was erroneously broadcast over the radio), the order being given by one of the flight crew exiting the cockpit and noticing that evacuation had not commenced. During this time, the aircraft settled aft, resting on its tail in a nose-up attitude. The four forward slides were unsafe for use due to the greater elevation and high winds. Most passengers evacuated from the rear six slides. Eight passengers using the forward slides sustained serious back injuries and were hospitalised. Other passengers suffered minor injuries such as abrasions and sprains.


Investigation

The accident was investigated by the National Transportation Safety Board (NTSB), which issued its final report on May 24, 1972. According to the NTSB, the Probable Cause of the accident was:

...the pilot’s use of incorrect takeoff reference speeds. This resulted from a series of irregularities involving: (1) the collection and dissemination of airport information; (2) aircraft dispatching; and (3) crew management and discipline; which collectively rendered ineffective the air carrier’s operational control system.


Aftermath

Last stage: serving as a restaurant in South-Korea
Subsequent to the accident, the aircraft was repaired and returned to service. N747PA was re-registered and leased to Air Zaire as N747QC from 1973 until March 1975, when returned to Pan Am, where it was renamed Clipper Sea Lark, and then Clipper Juan T. Trippe in honor of the airline's founder. It remained with Pan Am until the airline ceased operations in 1991, and was transferred to Aeroposta, then briefly to Kabo Air of Nigeria, back to Aeroposta, and was finally cut into pieces in 1999 in San Bernardino, California. The parts of the aircraft were shipped to Hopyeong, Namyangju, South Korea and reassembled, to serve as a restaurant for some time, until it closed down. The aircraft was finally scrapped in 2010.


Source:
http://en.wikipedia.org/wiki/Pan_Am_Flight_845

[Maiden flight] Concorde 1969


1973 Paris Air Show crash

The 1973 Paris Air Show crash was the crash of the second production Tupolev Tu-144 at Goussainville, Val-d'Oise, France, which killed all six crew and a further eight people on the ground. The crash, at the Paris Air Show on 3 June 1973, damaged the development program of the Tupolev Tu-144. One theory is that a French Mirage jet sent to photograph the aircraft without the knowledge of the Soviet crew caused the pilots to take evasive maneuvers, resulting in the crash. Another theory is that in a rivalry with the Anglo-French Concorde, the pilots attempted a maneuver that was beyond the capabilities of the aircraft.


Incident

The aircraft involved was Tupolev Tu-144S CCCP-77102, manufacturer's serial number 01-2, the second production Tu-144. The aircraft had first flown on 29 March 1972. This aircraft had been heavily modified compared to the initial prototype, now featuring engine nacelles split on either side of the fuselage, landing gear that retracted into the nacelles, and retractable foreplanes. The pilot was Mikhail Kozlov, and the co-pilot was Valery M. Molchanov. Also on board were G. N. Bazhenov, the flight navigator, V. N. Benderov, deputy chief designer and engineer major-general, B. A. Pervukhin, senior engineer, and A. I. Dralin, flight engineer. The crash occurred in front of 250,000 people, including designer Alexei Tupolev, towards the end of the show.

During the show, there was a "fierce competition between the Anglo-French Concorde and the Russian TU-144". The Soviet pilot, Mikhail Kozlov, had bragged that he would outperform the Concorde. "Just wait until you see us fly," he was quoted as saying. "Then you'll see something." On the final day of the show, the Concorde, which was not yet in production, performed its demonstration flight first. Its performance was later described as being unexciting, and it has been theorized that Kozlov was determined to show how much better his aircraft was.

Once in flight, the aircraft made what appeared to be a landing approach, with the landing gear out and the "moustache" foreplanes extended, but then engaged all four engines and climbed rapidly. Possibly stalling below 2,000 ft (610 m), the aircraft pitched over and went into a steep dive. Trying to pull out of the subsequent dive with the engines again at full power, the Tu-144 broke up in mid-air. The left wing came away first, and then the aircraft disintegrated and crashed, destroying 15 houses, and killing all six people on board the Tu-144 and eight more on the ground. Three children were among those killed, and sixty people received severe injuries.


Reactions

The crew of the Tu-144 were buried at the Novodevichy Cemetery in Moscow on 12 June 1973; during the ceremony Pyotr Dementiev, the Minister of the Aircraft Industry, gave a speech.

Following the crash, Marcel Dassault called for the 1975 Paris Air Show to be held at Istres, which is situated in open country 25 miles (40 km) north west of Marseille.

The crash reduced the enthusiasm of Aeroflot for the Tu-144. Restrictions on the Tu-144 following the Paris Air Show crash meant that it only saw limited service during 1977 and 1978, and it was finally withdrawn following another crash in May 1978.


Investigation

The accident was investigated by the DTCE, part of the French Military, which was responsible for accidents involving prototype aircraft in France. The wreckage was recovered to a hangar at Le Bourget, with some of it being flown by Antonov An-22 to the Soviet Union.


Theories

One theory is that the Tu-144 maneuvered to avoid a French Mirage chase plane that was attempting to photograph its unique canards, which were advanced for the time, and that the French and Soviet governments colluded with each other to cover up such details. The flight of the Mirage was denied in the original French report of the incident, perhaps because it was engaged in industrial espionage. More recent reports have admitted the existence of the Mirage (and the fact that the Soviet crew were not told about the Mirage's flight) though not its role in the crash. However, the official press release did state: "though the inquiry established that there was no real risk of collision between the two aircraft, the Soviet pilot was likely to have been surprised." Howard Moon also stresses that last-minute changes to the flight schedule would have disoriented the pilots in a cockpit with notably poor vision. He also cites an eyewitness who claims the co-pilot had agreed to take a camera with him, which he may have been operating at the time of the evasive maneuver. The initial approach may have been an attempted landing on the wrong runway, which occurred due to a last-minute shortening of the Tu-144's display.

Bob Hoover believed that the rivalry of the Tu-144 and Concorde led the pilot of the Tu-144 to attempt a maneuver that went beyond the abilities of the aircraft: "That day, the Concorde went first, and after the pilot performed a high-speed flyby, he pulled up steeply and climbed to approximately 10,000 [feet] before leveling off. When the Tu-144 pilot performed the same maneuver he pulled the nose up so steeply l didn't believe he could possibly recover."

Another theory claims that there was deliberate misinformation on the part of the Anglo-French team. The main thrust of this theory was that the Anglo-French team knew that the Soviet team were planning to steal the design plans of the Concorde, and the Soviets were allegedly passed false blueprints with a flawed design. The case, it is claimed, contributed to the imprisonment by the Soviets of Greville Wynne in 1963 for spying. Wynne was imprisoned on 11 May 1963 and the development of the Tu-144 was not sanctioned until 16 July.

In 2005, during the production of the Russian documentary "The fight for supersonic flight: The truth about the Tu-144," E. Krupyanskiy said: "There were certain experimental control units present on the plane (Tu-144), that were installed on the plane for the first time." On the in-cockpit footage released before the test flight, the control console is clearly seen fully exposed on the back of the captain's seat. The control units were supposed to be disabled, with the console covered up and sealed for the test flight, however in the wreckage the console was found without seals or cover. Krupyanskiy said "They enabled a system, which was used to improve the maneuverability characteristics of the aircraft... improving the effectiveness of the rudders." E. Gorynov (another Tu-144 test pilot) stated that he is completely sure that usage of these experimental technologies was not decided by the crew. He also stated that he was 30 meters away from the aircraft before the test flight and overheard a discussion by the crew, where the captain said loudly: "If we are going to die, then at least we will die all together". This is further supported by the fact that after a meeting held in the evening before the flight, a G. N. Bazhenov (the navigator on the flight) went to speak with E. Gorynov, who stated in the documentary that Bazhenov was very worried, and said the leadership had "come up with something", but that he would not be able to disclose anything in detail. It was concluded in the documentary by the narrator that the flight crew was not at fault for the incident.



Source:
http://en.wikipedia.org/wiki/1973_Paris_Air_Show_crash

Rescue mission over the Pacific

On 22 December 1978, a small Cessna 188 aircraft, piloted by Jay Prochnow, became lost over the Pacific Ocean. The only other aircraft in the area that was able to assist was a commercial Air New Zealand flight. After several hours of searching, the crew of the Air New Zealand flight located the lost Cessna and led it to Norfolk Island, where the plane landed safely.

The incident

Jay Prochnow, a retired US Navy pilot, was delivering a Cessna 188 from the USA to Australia. Prochnow had a colleague who was flying another Cessna 188 alongside him. The long trip would be completed in four stages. On the morning of 20 December, both pilots took off from Pago Pago. His colleague crashed on take off, but was unharmed. Prochnow landed and set out the following day to Norfolk Island.

When Prochnow arrived at the region where he believed Norfolk Island was, he was unable to see the Island. He informed Auckland Air Traffic Control (AATC), but at this point there was no immediate danger. He continued searching; after locating more homing beacons from other islands, he realised his automatic direction finder had malfunctioned and he was now lost somewhere over the Pacific Ocean. He alerted AATC and declared an emergency.

There was only one plane in the vicinity, Air New Zealand Flight 103, a McDonnell Douglas DC-10 travelling from Fiji to Auckland. The flight had 88 passengers on board. The captain was Gordon Vette, the first officer was Arthur Dovey, and the flight engineer was Gordon Brooks. Vette knew that if they did not try and help, Prochnow would almost certainly die. Vette was a navigator, and at the time of the incident he still held his licence. Furthermore, another passenger, Malcome Fortsyth, was also a navigator; when he heard about the situation he volunteered to help. As the DC-10 did not have an onboard radar, the crew had to come up with creative ways to find the lost Cessna. By this time, Prochnow had crossed the international date line, and the date was now 22 December.

Vette was able to use the setting sun to gain an approximate position of the Cessna. Then contact was established over a VHF radio which had a range of 200 nautical miles. It was hoped the DC-10 would be making a vapour trail to make it more visible. After contacting Auckland it was determined that weather conditions were not suitable for a trail. Brooks knew that by dumping fuel they could produce a vapour trail. As the search was getting more and more desperate, they decided to try it. Prochnow did not see the trail, and it was starting to get dark. Vette wanted all the passengers to be involved, so he asked them to look out of the windows and invited small groups to come to the cockpit.

As it got darker and darker, Prochnow considered ditching, but Vette did not want to give up. The crew of the DC-10 were able to use the exact moment of sunset to get a better fix on Prochnow's position. They also used a technique known as "aural boxing" to try to pinpoint the small plane; this took over an hour to complete. Once it had been done, they had a much better approximation of Prochnow's position. The DC-10 used its strobe lights to try to make itself more visible to the Cessna. It took some time, but eventually Prochnow reported seeing light. However, this was not the DC-10, it was an oil rig, and Prochnow went towards it. This was identified as Penrod, which was being towed from New Zealand to Singapore. This gave Prochnow’s exact position. After some confusion about the exact position of the Penrod, it was finally established that the estimates of the crew of the DC-10 were very accurate. Furthermore, Prochnow was probably able to make it to Norfolk Island with his remaining fuel. He touched down on Norfolk Island after being in the air for twenty-three hours and five minutes.

Events following the incident

McDonnell Douglas awarded the crew a certificate of commendation for "the highest standards of compassion, judgment and airmanship."
Gordon Brooks was killed when the DC-10 operated Air New Zealand Flight 901 that he was flight engineer on crashed into Mount Erebus, Antarctica, on 28 November 1979. Vette published a book about the Flight 901 disaster, called Impact Erebus.


Source:
http://en.wikipedia.org/wiki/Cessna_188_Pacific_rescue

[Kirakat] Yamal Airlines

Yamal Airlines A320-200 // VP-BHX
Yamal Airlines Canadair CRJ-200 // VQ-BPD
Yamal Airlines Tu-134A-3 // RA-65132
Yamal Airlines B737-400 // VQ-BIK

Minden, amit a poggyászokról tudni akartál...

Alábbi írásunkban megpróbálunk betekintést nyújtani a repülőtér kulisszái mögé. Ezúttal a poggyászok útját követjük nyomon, és a rájuk leselkedő veszélyforrásokat vesszük sorra. Mint az a későbbiekben is olvasható, több fázisnál is tapasztalhatunk "biztonsági réseket", de ez még ne vegye el kedvünket a poggyásszal történő utazástól! És azt se feltételezzük majd a legközelebbi repülőútnál, hogy bárki, aki csak ránéz a poggyászunkra, az annak tartalmára utazik!

Poggyászmérleggel ellátott standard check-in pult
Egy átszállás nélküli egyszerű, úgyn. point-to-point járat sémája: az utas megérkezik a reptérre, majd beáll a járatának megfelelő check-in sorba, és a gép tervezett indulási idejéhez képest jellemzően legkorábban 90-120, legfeljebb 45-30 perccel, még a check-in zárásáig, leadja az úgyn. feladott poggyászát. A check-in pultban ülő alkalmazott leméri, majd felcímkézi a poggyászt egy vonalkóddal ellátott úgyn. taggel, melynek segítségével a csomag rendeltetési helye és ideje a poggyászosztályozó automatika számára egyértelműen azonosíthatóvá válik. Az utas legközelebb már legfeljebb a gépen ülve látja, ahogy a rakodók a poggyászoskocsiról a poggyászszalagra pakolják azt, és az bekerül a gép gyomrába. Ha úgyn. ULD-s a járatot teljesítő repülőgép, akkor legfeljebb a konténert látja az utas, és reménykedik, hogy benne van az ő poggyásza is valamelyikben. Leszállást követően, mire a rakodók kiszedik a poggyászokat a gép rakteréből, az utas legtöbbször már az utashídon vagy a forgalmi előtéren át gyalogol ill. busszal tart a terminál felé. Legközelebb kb. a leszállástól számított 15-20p múlva látja viszont a poggyászát.


Mi történik a poggyásszal a poggyászfeladástól a raktérbe kerülésig?

Az induló és az érkező poggyászok útja a reptéren
Miután a check-in ablaknál búcsút intettünk feladott poggyászunknak, az egy röntgenes átvilágítást követően - hacsak nem próbáltunk meg valami tiltott dolgot felvinni a repülőre a bőröndünkbe rejtve - rendszerint ugyanarra a  - nagyobb reptereken akár több km hosszúságú - szalagra kerül mint minden más desztinációra induló poggyász. Ez egészen addig így is marad, míg a poggyászosztályozóban egy robotkar be nem szkenneli a taget, és az adott járathoz hozzárendelt csúszdára ki nem löki a csomagot. A csúszda alján egy rakodó tartózkodik, aki géptípustól függően vagy úgyn. ULD-konténerekbe rakja, vagy poggyászoskocsikra stócolja fel a poggyászokat.
Mivel a poggyászok nem egyenletesen, hanem változó intenzitással érkeznek meg a szalagvégre, egy-egy lájtosabb időszakban elméletileg lehetőség adódhat a poggyászok megdézsmálására. Magas biztonsági fokozatú munkaterületről van szó, így a helyiség természetesen be van kamerázva. Az itt dolgozókat, mint bármelyik másik repülőtéri alkalmazottat, a munkaterületre való belépéskor átvilágítják, de kifelé jövet rendszerint nincs semmilyen kontroll...


Igazak azok a históriák, miszerint a poggyászok dézsmálása a gép rakodása közben, a raktérben történik?

Harc az idővel és a csomagokkal a raktérben
Mire a poggyászoskocsit, a járatfelvétel zárását követően, kiengedik a gép mellé, a járat indulásáig rendszerint már nincs túl sok idő, ezért a poggyászokat elég jó tempóban kell a szalagra hányniuk a rakodóknak. A raktérben ezalatt, géptípustól függően, 1-2 ember tartózkodik, akik nyomás alatt dolgoznak, hiszen a poggyászok folyamatosan jönnek fel a szalagon, nekik pedig úgy kell pakolniuk azokat, hogy az hely szempontjából a lehető leggazdaságosabb legyen, s eközben a biztonsági előírásokat is betartsák.
A raktérben igaz, hogy nincsen kamera, de gyakran olyan gyér a világítás, és szűk a hely, hogy ilyen körülmények közt nem valószínű, hogy bárki is a poggyászok tartalma közt kutakodna...


Vannak olyan mendemondák is, miszerint a poggyászátvilágítóból szólnak le, mely bőröndben van ígéretes zsákmány...

Sajnos volt már rá példa a világban. Ehhez több, különböző munkaterületen dolgozó munkatárs együttes, összehangolt, rendőrségi szakszóval élve bűnszervezetben elkövetett "munkájára" van szükség...


Miért dobálják a rakodók a poggyászokat?

Nehéz fizikai munka a rakodóké
Az utasok, annak reményében hogy így poggyászukat így nagyobb biztonságban tudhatják, gyakran befóliáztatják azokat a repülőtéren. A fólia azonban, annak nagy tapadási súrlódása miatt, csak nehezíti a rakodók munkáját, ugyanis a poggyász nem csúszik, hanem megtapad miatta a különböző felületeken. A rakodó emiatt, még, ha könnyű is a poggyász, kénytelen lesz dobni azt ahelyett, hogy csúsztatni próbálná. 
A legtöbb reptéren a rakodókat nem segítik speciális gépek, ezért kézi erővel kell minden egyes poggyászt - lehet az akár egy, a check-in pultban 'heavy' taggel ellátott, túlsúlyos, 30kg-os koffer is - átpakolniuk egyik helyről a másikra (szalagról kocsira, kocsiról szalagra, szalagról a poggyásztérbe), egy járat alkalmával soktonnyányi súlyt, ráadásul több alkalommal. Ha a rakodók a poggyászokat, a gravitáció segítségét igénybe nem véve, szép akkurátusan pakolnák, a járat nem tudna a számára előírt úgyn. fordulóidő - ez fapados járat esetén jellemzően kb. 30p - alatt megfordulni egy célállomásról, és az utasok is jóval többet várhatnának a csomagjukra a megérkezésüket követően...


Lehet-e az ellen védekezni, hogy egy feladott poggyászba az utas tudta nélkül csempésszen valaki bármilyen illegális dolgot (pl. védett/tiltott állatot/növényt, drogot) ki vagy be egy másik országba? A Bangkok Hilton c. filmben a Katrinát alakító Nicole Kidmant ártatlanul vádolják meg (majd ítélik halálra) Thaiföldön egy hasonló eset miatt...

Poggyászfóliázást majd' minden reptéren kínálnak
Védekezni ellene nem lehet, hiszen egy alkalmas eszközzel egy pillanat alatt el lehet róla távolítani a fóliát, sőt akár észrevétlenül vissza is lehet rá "varázsolni", ha szükséges. A cipzárral zárható bőröndök kinyitásához (és észrevehetetlen visszazárásához) pedig egy egyszerű golyóstoll is elég. Innentől mindenkinek a fantáziájára van bízva, hogy mit lehet ki- ill. belecsempészni az utas poggyászába annak tudta nélkül...


Feladott poggyász nem csak bőrönd lehet - léteznek különleges poggyászok is: bicikli, síléc, szörfdeszka, házikedvencek vagy akár egészen extrém poggyászok: fenyőfa, sörösrekesz, LCD tv, szigony...

Légitársasága válogatja ill. utazási osztálytól is függ, hogy egy járatra hány darab és milyen súlyú feladott poggyász "vihető fel" díjmentesen. Bevett szokás az, hogy 1db max. 23kg-os, de díj ellenében - kilogrammonként fizetendő, de max. 32kg-os lehet! - akár több darab feladására is lehetőség van, viszont darabtól függetlenül a max. súlyhatár összesen 60kg körül van...

Kerékpár feladása speciális védőcsomagolásban
A túlméretes, úgyn. 'bulky' poggyászokat (pl. bicikli, sílécek, snowboard, golfkészlet) egy külön pultban kell feladni, ezek az átvilágítást követően, bár nem a bőröndöket továbbító szalagon, de végül ugyanúgy a poggyászosztályozóba kerülnek, ahol a rakodók ezeket is poggyászoskocsikra teszik. A túlméretes poggyászok általában a gép farkában lévő úgyn. bulk raktérbe kerülnek...


Megesik, hogy ha a fedélzetre valamilyen okból felkerül egy "túlméretes" kézipoggyász, azt leküldi a személyzet a raktérbe?

Bevett gyakorlat, hogy a légitársaságok úgyn. size-wize cartokat állítanak fel a check-in pultok előtt, melyek standard kézipoggyász méretűek (pl: 23cm x 41cm x 51cm). Ha a cartba bele tudjuk tenni a poggyászunkat, és a súlya is rendben van, akkor az felmehet a fedélzetre kézipoggyászként. Az utasok gyakorta folyamodnak különböző cselekhez, melyekkel megpróbálják feljuttatni a gépre "túlméretes" vagy "túlsúlyos" poggyászaikat. Ha sem a check-in-esnek, sem a beszállítást végző alkalmazottaknak nem tűnik fel a turpisság, gyakran megesik, hogy mire az utolsó utasok is felszállnak a fedélzetre, az ülések feletti poggyásztartó rekeszek teljesen megtelnek. Ilyenkor a légikísérők megpróbálnak nekik helyet szorítani, de ha nagyon nem megy nekik, a csomagokat bizony leküld(het)ik a rakodókkal a raktérbe a feladott poggyászok mellé. Ez egyike a késési okoknak, ugyanis ilyen esetben a már rendszerint lezárt raktérajtókat újra ki kell nyitnia a rakodóknak...


A babakocsi is poggyásznak számít?

Kézipoggyász méretűre összecsukható speciális babakocsi
A babakocsi, csakúgy mint a tolószék, poggyásznak számít, így már a check-innél poggyászcímkét kap. Ezeket az utas egészen a gép ajtajáig hozhatja, innentől a rakodók veszik át tőle, és teszik be a gép leghátsó, úgyn. bulk rakterébe. Leszállást követően az utas, ha szerencsés, már a gépajtóban megkaphatja a babakocsit, mert addigra jó esetben már kiszedik azt a raktérből a rakodók...


Hogyan fordulhat elő, hogy a poggyász nem érkezik meg azzal a járattal, amivel kellett volna neki?

Különböző poggyász-tagek
Aranyszabály, hogy poggyász az utasa nélkül nem utazhat, csak speciális esetben ('rush' poggyász), tehát, ha a poggyász fel lett adva, de az utas nem jelenik meg a beszállítókapuban a járatfelvétel zárásáig, akkor a poggyászát a rakodóknak ki kell keresniük a raktérből és el kell onnan távolítaniuk.
Leggyakrabban persze akkor szokott elvészni a poggyász, ha egy közbülső repülőtér közbeiktatásával repülünk. Ilyenkor egy külön taget ('hot transfer') kap a poggyász már a check-in-nél abból a célból, hogy a rakodók tudják, hogy az adott poggyászt a raktér legkönnyebben elérhető, raktérajtó felőli részére kell pakolniuk, hogy mikor a közbülső repülőtéren kinyitják majd a rakodók a raktérajtót, egyből külön pakolhassák őket a végcéljukra érkező ('local') poggyászoktól. Ha a rakodó a rakodási utasítás ellenére valamiért mégsem veszi észre ezt a taget, és a csatlakozásig csak kevés idő áll az utas rendelkezésére, könnyen előfordulhat, hogy a poggyász a végcéljukra érkezőkkel egy szalagon várja majd gazdáját ..mindhiába! Persze elromolhat a poggyászosztályozó automatika is, de ez a ritkább eset...


Mi a teendő, ha sérülten érkezik, netán egyáltalán nem érkezik meg a poggyászunk?

A csomagátvételi csarnok jelölése a leszállást követően
Ha megérkezik a poggyászunk, de sérülten, neadjisten hiányosan, netalántán egyáltalán nem, azt érkezés után a poggyászátvételi csarnokban a helyi Lost&Found ablaknál kell bejelenteni, ahol jegyzőkönyvet vesznek fel róla, ám a poggyász eltűnésének tényét az adott légitársaság ügyfélszolgálatánál is be kell jelenteni. Érte később, a légitársaság szabályzatának megfelelően, kártérítés jár.
Az, hogy nem érkezett meg a poggyászunk a járattal, amivel jöttünk, még nem jelenti, hogy el is veszett, hiszen ha a check-in-ben rátett tag még rajta van, a számítógépes rendszer segítségével könnyedén megtudható, hol van. Ha szerencsénk van, és a következő járatra még fel tudják tenni a poggyászt, megadott címre díjmentesen utánunk küldik. Persze megesik, hogy tévedésből vagy gondatlanságból a világ egy távoli pontjára kerül, ahonnét csak hónapok múltán kapjuk kézhez, rosszabb esetben valóban (nyomtalanul) elvész mindörökre. A statisztikák szerint 1000-ból 900 poggyász időben és épségben érkezik meg, és a 100 elveszett poggyászból mindösszesen átlagosan 1-2 veszik el végleg...


Tudtad-e?

  • A jegykezelők hivatottak eldönteni, hogy melyik poggyász minősül kézipoggyásznak, vagyis mi vihető fel a repülőgép fedélzetére, és mi nem. Bár a szabályok légitársaságonként változhatnak, a kézipoggyász általánosan elfogadott mérete: 115 cm (pl: 23cm x 41cm x 51cm), súlya: 3-5 kg.  Kézipoggyászként csak a jegykezelők által ellenőrzött és "cabin baggage" címkével ellátott poggyászok vihetők fel a fedélzetre. Amennyiben a csomagot a jegykezelő túl nagynak vagy súlyosnak ítéli, azt feladott poggyászként kell továbbítani.
  • Nagyméretű, azaz kézipoggyásznál nagyobb, hangszert (pl. cselló) csak úgy lehet a fedélzetre vinni, ha jegyet vásárolnak a tárgynak, mert egy külön ülés szükséges az elhelyezéséhez.
  • Vadász- vagy sportfegyverek - töltetlenül! - ill. lőszerek a szállításukra vonatkozó rendkívül szigorú szabályok betartása mellett is csak és kizárólag feladott poggyászként adhatók fel.
  • Bizonyos légitársaságok esetében felvihető a fedélzetre 5 kg-ig, speciális szállításra alkalmas táskában-dobozban élő állat (kutya, macska). (A súlykorlát alól felmentést csak az úgyn. szervizkutya [pl. vakvezető] kaphat!) 5 kg súly felett élőállat szállítására csak a repülőgép csomagterében kerülhet sor.
  • A nemzetközi biztonsági szabályoknak megfelelően folyadék csak kis mennyiségben és különleges csomagolásban juthat a repülőgép fedélzetére. Lehetőség szerint a folyadékot (krémet, zselét, olajat, zsírt) a feladandó poggyászba csomagoljanak! A fedélzeti használatra szánt folyadékot egyenként 100 milliliteres tárolóedényekben lehet szállítani. A kis tégelyeket egy maximum 1 literes űrtartalmú, átlátszó és újrazárható műanyag zacskóban kell elhelyezni. A 100 milliliternél nagyobb mennyiségű folyadékot a biztonsági személyzet elkobozza és megsemmisíti.
    A biztonsági vizsgálat, a ruházat és a kézipoggyász átvilágítása után az utasok a tranzit területére érkeznek, ahol szabadon válogathatnak az üzletek, éttermek kínálatából. Az itt vásárolt termékeket – beleértve a folyadékokat is – szabadon felvihetik a repülőgép fedélzetére, mert ezek már átestek a biztonsági ellenőrzésen.


Forrás (részben):
http://www.bud.hu/utazas/indulas_elott/poggyasz

[Showcase] Southwest Airlines' 'Heart One' B737-800


Understanding Jeppesen charts

Pranas Drulis from Air Baltic explains Jeppesen departure...

...and approach charts for Vilnius Airport, Lithuania.

"Jepps"

Today's most advanced solution: the electronic flight bag
Jeppesen (also known as Jeppesen-Sanderson) is an American company that specializes in navigational information, operations management and optimization solutions, crew and fleet management solutions and flight training products and services. Jeppesen serves four market segments (Commercial Aviation, Business Aviation, Military, and General Aviation). Airlines and private pilots, airline operations centers, military teams, ship operators and boaters, as well as railway companies use Jeppesen charts, data, and operations management tools. The company is a subsidiary of The Boeing Company. Jeppesen also publishes related software, some of which is used on its electronic flight bag and in others offered by avionics manufacturers and other third parties.

Jeppesen is headquartered in Inverness, Colorado, an unincorporated area of Arapahoe County, with offices around the world, including Neu-Isenburg (Germany), Massa (Italy), Crawley (United Kingdom), Gothenburg (Sweden), Canberra (Australia) and Gdańsk (Poland). The company employs approximately 3,200 people.

In the navigation space, which is where Jeppesen started, Jeppesen's charts are often called "Jepp charts" or simply "Jepps" by pilots, due to the charts' de facto popularity. This popularity extends to electronic charts, which are increasingly favored over paper charts by pilots and mariners as mobile computing devices, electronic flight bags, integrated electronic bridge systems and other display devices become more common and readily available.


Timeline

1940s
  • 1941: Jeppesen moved the company from Salt Lake City, Utah, to Denver, Colorado.
  • 1947: Jeppesen and the CAA collaborated to introduce standard instrument approach procedures and to establish the National Flight Data Center.

1957: Jeppesen expanded to Europe by opening an office in Frankfurt, Germany to provide services to customers in Europe and beyond.

1961: The company was purchased by the Times-Mirror Company (parent company of the Los Angeles Times).

1970s
  • 1973: Jeppesen NavData® was first used commercially in flight management computer guidance systems (FMCGS).
  • 1974: Jeppesen entered the flight training business when Times-Mirror merged it with Sanderson Films.

1980s
 
Jeppesen began a series of acquisitions that added to its product and service offerings:
    1. Bottlang Airfield Manual added visual flight rules (VFR) approach and airport information for Europe;
    2. Icarus, which became OpsData, added runway and performance analysis, used to plan and optimize aircraft takeoff and landing performance.
      • 1989: Jeppesen purchased Lockheed DataPlan, a flight planning and weather services company. Jeppesen's current chief executive officer, Mark Van Tine, formerly worked for this company.

      1990s
      • Between 1990 and 1995, Jeppesen expanded globally by opening offices in Australia and China to serve customers in the Asia-Pacific region, and continued to expand through acquisition by purchasing TannGuide, which became the JeppGuide airport directory; APU, which became part of OpsData; and International Aviation Publishers, which created aviation maintenance training manuals;
      • 1996: Jeppesen introduced JeppView, which provided a complete, worldwide library of terminal aeronautical charts on CD-ROM; Jeppesen acquired MentorPlus, a maker of PC-based aviation and marine moving map and flight planning applications;
      • 1998: Jeppesen introduced Internet-based delivery of NavData updates.

      2000s
      • 2000: Jeppesen purchased Nobeltec, Inc., a Portland, Oregon-based company that provides marine navigation software and charts; Jeppesen was acquired by The Boeing Company. Boeing bought Jeppesen from the Tribune Company, which had acquired Times-Mirror and was selling off its non-core assets;
      • 2002: Jeppesen's first commercial electronic flight bag and Internet-based chart delivery were introduced;
      • 2003: Jeppesen became the first commercial organization to be certified by the Federal Aviation Administration as a Qualified Internet Communications Provider (QICP);
      • 2004: Jeppesen acquired SBS International, a New York City-based provider of crew scheduling services. Jeppesen acquired SBS through an arrangement with Boeing, which had purchased SBS in 2001;
      • 2006: Jeppesen purchased Carmen Systems, a provider of crew scheduling and disruption management software. The company was headquartered in Gothenburg, Sweden, and had some 300 employees. Jeppesen quickly consolidated Carmen and SBS product offerings and locations;
      • 2007: Jeppesen purchased C-MAP, a provider of digital maritime cartography, data services and other navigational information. C-MAP became part of Jeppesen's marine division. It has operations in Italy, the United Kingdom, Norway, Greece, Poland, Russia, India, Japan, South Korea, Singapore, Malaysia, Australia and the United States;
      • 2008: Jeppesen purchased Ocean Systems, Inc., an Alameda, California-based provider of vessel and voyage optimization solutions for commercial marine operations; Jeppesen received FAA approval for its Airport Moving Map application for Class 2 electronic flight bags;
      • 2009: Jeppesen received FAA approval to design and validate required navigation performance (RNP) procedures in the United States; Jeppesen sold its Nobeltec product line to Signet USA.

      2010s
      • 2010: Jeppesen received approval from the Civil Aviation Safety Authority of Australia to design, validate and maintain both required navigation performance and conventional instrument approach procedures; Jeppesen was named the 2010 INFORMS Prize winner for its organization-wide use of operations research.
      • 2012: Jeppesen-designed arrival procedures are rolled out for Denver International Airport.
      • 2013: Jeppesen introduces Mobile FlightDeck VFR for general aviation pilots; Jeppesen concludes sale of journey planning business to SilverRail Technologies.
      • 2014: Jeppesen rolls out FlightDeck Pro for Windows 8.


      Source:
      http://en.wikipedia.org/wiki/Jeppesen
      Related Posts Plugin for WordPress, Blogger...