Special mounts and special views from Artur Sarkysian

Czech L-29 plane celebrates its 50th anniversary above Stupino Airfield in Russia..

Russian aerobatic display team Russ flying L-39 Albatros planes at the 2014 F1 Russia GP in Sochi, Russia..

L-39 taking off with a female passenger..

The most extreme video with GoPro camera: max flight speed=1000km/h, acceleration g=6 The video was filmed with a GoPro HD Hero2 camera installed on the tail of a Mig-29 and inside the cockpit of a Su-27 of the so-called Kubinka Diamond. The Russian Air Force display team made by four Flankers of the Russian Knights and and five Fulcrums of the Strizhi (Swifts)..

Mig-29s from other crazy perspectives..

The world’s first GoPro mount on-board the MiG-31 Foxhound..

Operation Overdue

Only for people with strong nerves!

Impact Erebus

A very rare 1990 documentary detailing the investigative campaign of Captain Gordon Vette..

The Mount Erebus Disaster

The first comprehensive documentary on the Mt Erebus Disaster of 1979..

Air New Zealand Flight 901

Only a huge smudge could be seen at first by the SAR team
Air New Zealand Flight 901 (TE-901) was a scheduled Air New Zealand Antarctic sightseeing flight that operated between 1977 and 1979. The flight left Auckland Airport in the morning and spent a few hours flying over the Antarctic continent, before returning to Auckland in the evening via Christchurch. On 28 November 1979, the fourteenth flight of TE-901, a McDonnell Douglas DC-10-30 registered ZK-NZP, flew into Mount Erebus on Ross Island, Antarctica, killing all 237 passengers and 20 crew on board. The accident is commonly known as the Mount Erebus disaster.

The initial investigation concluded the accident was caused by pilot error but public outcry led to the establishment of a Royal Commission of Inquiry into the crash. The commission, presided over by Justice Peter Mahon, concluded that the accident was caused by a correction made to the coordinates of the flight path the night before the disaster, coupled with a failure to inform the flight crew of the change, with the result that the aircraft, instead of being directed by computer down McMurdo Sound (as the crew assumed), was re-routed into the path of Mount Erebus. In Justice Mahon's report, he accused Air New Zealand of presenting "an orchestrated litany of lies" and this charge in the end led to changes in senior management at the airline.

The accident is New Zealand's deadliest peacetime disaster. Flight 901, alongside several other related incidents, were highly detrimental to the reputation of McDonnell Douglas DC-10 aircraft within the public. Following the crash, DC-10 aircraft in New Zealand were replaced by Boeing 747s.

Flight and aircraft

Air New Zealand's sightseeing brochure
The flight was designed and marketed as a unique sightseeing experience, carrying an experienced Antarctic guide who pointed out scenic features and landmarks using the aircraft public-address system, while passengers enjoyed a low-flying sweep of McMurdo Sound. The flights left and returned to New Zealand the same day.

Flight 901 would leave Auckland International Airport at 8:00 am for Antarctica, and arrive back at Christchurch International Airport at 7:00 pm after flying a total of 5,360 miles (8,630 km). The aircraft would make a 45-minute stop at Christchurch for refuelling and crew change, before flying the remaining 464 miles (747 km) to Auckland, arriving at 9:00 pm. Tickets for the November 1979 flights cost NZ$359 per person (equal to about NZ$1,386 in the first quarter of 2013).

Dignitaries including Sir Edmund Hillary had acted as guides on previous flights. Hillary was scheduled to act as the guide for the fatal flight of 28 November 1979, but had to cancel owing to other commitments. His long-time friend and climbing companion, Peter Mulgrew, stood in as guide.

The flights usually operated at about 85% of capacity; the empty seats, usually the centre ones, allowed passengers to move more easily about the cabin to look out of the windows.

The aircraft used on the Antarctic flights were Air New Zealand's eight McDonnell Douglas DC-10-30 trijets. The aircraft on 28 November was registered ZK-NZP. The 182nd DC-10 to be built, and the fourth DC-10 to be introduced by Air New Zealand, ZK-NZP was handed over to the airline on 12 December 1974 at McDonnell Douglas's Long Beach plant. It was the first Air New Zealand DC-10 to be fitted with General Electric CF6-50C engines as built, and had logged 20,750 flight hours prior to the crash.


(All times are as at McMurdo Base: New Zealand Standard Time; UTC+12. Mainland New Zealand was running on New Zealand Daylight Time (UTC+13) at the time of the crash.)

Circumstances surrounding the accident

Captain Jim Collins and co-pilot Greg Cassin had never flown to Antarctica before, but they were experienced pilots and were considered qualified for the flight. On 9 November 1979, 19 days before departure, the two pilots had attended a briefing in which they were given a copy of the previous flight's flight plan.

Expected and actual track of the flight
Unknown to Captain Collins at the time of the briefing, the flight plan coordinates transcribed into Air New Zealand's ground computer differed from the route flight plan approved in 1977 by the New Zealand Department of Transport Civil Aviation Division. The approved flight plan was along a track directly from Cape Hallett to the McMurdo non-directional beacon (NDB), which, coincidentally, entailed flying almost directly over the 12,448-feet peak of Mount Erebus. However, the printout from Air New Zealand's ground computer system presented at a briefing on 9 November corresponded to a southerly flight path down the middle of the wide McMurdo Sound, leaving Mount Erebus approximately 27 miles to the east. The majority of previous flights had also entered this flight plan's coordinates into their aircraft INS navigational systems and flown the McMurdo Sound route, unaware that the route flown did not correspond with the approved route.

Captain Leslie Simpson, the pilot of a previous flight on 14 November, and also present at 9 November briefing, compared the coordinates of the McMurdo TACAN navigation beacon (approximately three miles east of McMurdo NDB), and the McMurdo waypoint that the flight crew had entered into the INS, and was surprised to find a large distance between the two. After this flight, Captain Simpson advised Air New Zealand's Navigation section of the difference in positions. For reasons that were disputed, this triggered Air New Zealand's Navigation section to subsequently resolve to update the McMurdo waypoint coordinates stored in the ground computer to correspond with the coordinates of the McMurdo TACAN beacon, despite this also not corresponding with the approved route.

The Navigation section changed the McMurdo waypoint co-ordinate stored in the ground computer system at approximately 1:40 am on the morning of the flight. Crucially, the flight crew of Flight 901 was not notified of the change. The flight plan printout given to the crew on the morning of the flight, which was subsequently entered by the flight crew into the aircraft's INS, differed from the flight plan presented at 9 November briefing and from Captain Collins' map mark-ups which he had prepared the night previously. The key difference between the routes was that the flight plan presented at 9 November briefing corresponded to a track down McMurdo Sound, giving Mount Erebus a wide berth to the east, whereas the flight plan printed on the morning of the flight corresponded to a track that coincided with Mount Erebus. In contrast to the McMurdo Sound route, the updated route would result in a collision with Mount Erebus if this leg was flown at an altitude of less than 13,000 feet (4,000 m). Additionally, the computer program was altered such that the standard telex forwarded to Air Traffic Controllers at McMurdo displayed the word "McMurdo" rather than the coordinates of latitude and longitude, for the final waypoint. During the subsequent inquiry Justice Mahon concluded that this was a deliberate attempt to conceal from the United States authorities that the flight plan had been changed, and probably because it was known that the United States Air Traffic Control would lodge an objection to the new flight path.

The flight had earlier paused during the approach to McMurdo Sound to carry out a descent, via a figure-eight manoeuvre, through a gap in the low cloud base (later estimated to be at approximately 2,000 to 3,000 feet (610 to 910 m)) whilst over water to establish visual contact with surface landmarks and afford the passengers a better view. It was established that the flight crew either was unaware of or ignored the approved route's minimum safe altitude (MSA) of 16,000 feet (4,900 m) for the approach to Mount Erebus, and 6,000 feet (1,800 m) in the sector south of Mount Erebus (and then only when the cloud base was at 7,000 feet (2,100 m) or better). Photographs and news stories from previous flights showed that many of these had also been flown at levels substantially below the route's MSA. In addition, pre-flight briefings for previous flights had authorised descents to any altitude authorised by the US Air Traffic Controller at McMurdo Station. As the US ATC expected Flight 901 to follow the same route as previous flights down McMurdo Sound, and in accordance with the route waypoints previously advised by Air New Zealand to them, the ATC advised Flight 901 that it had a radar that could let them down to 1,500 feet (460 m). The aircraft was not located by the radar equipment, and the crew experienced difficulty establishing VHF communications. The distance measuring equipment (DME) did not lock onto the McMurdo Tactical Air Navigation System (TACAN) for any useful period.

Wreckage of ZK-NZP
Cockpit voice recorder transcripts from the last minutes of the flight before impact with Mount Erebus indicated that the flight crew believed they were flying over McMurdo Sound, well to the west of Mount Erebus and with the Ross Ice Shelf visible on the horizon, when in reality they were flying directly toward the mountain. Despite most of the crew being engaged in identifying visual landmarks at the time, they never perceived the mountain directly in front of them. Approximately six minutes after completing a descent in Visual Meteorological Conditions, Flight 901 collided with the mountain at an altitude of approximately 1,500 feet (460 m). Passenger photographs taken seconds before collision removed all doubt of a "flying in cloud" theory, showing perfectly clear visibility well beneath the cloud base, with landmarks 13 miles to the left and 10 miles to the right of the aircraft visible.

Changes to the coordinates and departure

The crew input the coordinates into the plane's computer before they departed at 7:21 am from Auckland International Airport (now Auckland Airport). Unknown to them, the coordinates had been modified earlier that morning to correct the error introduced previously and undetected until then. The crew evidently did not check the destination waypoint against a topographical map (as did Captain Simpson on the flight of 14 November) or they would have noticed the change. These new coordinates changed the flight plan to track 27 miles (43 km) east of their understanding. The coordinates programmed the plane to overfly Mount Erebus, a 3,794 m (12,448 ft) high volcano, instead of down McMurdo Sound.

About four hours after a smooth take-off, the flight was 42 miles (68 km) away from McMurdo Station. The radio communications centre there allowed the pilots to descend to 10,000 ft (3,000 m) and to continue "visually." Air safety regulations at the time did not allow flights to descend to lower than 6,000 ft (1,800 m), even in good weather, although Air New Zealand's own travel magazine showed photographs of previous flights clearly operating below 6,000 ft (1,800 m). Collins believed the plane was over open water.

Crash into Mount Erebus

Collins told McMurdo Station that he would be dropping to 2,000 feet (610 m), at which point he switched control of the aircraft to the automated computer system. Outside there was a layer of clouds that blended with the white of the snow-covered volcano, forming a sector whiteout – there was no contrast between the two to warn the pilots. The effect was to deceive everyone on the flight deck, making them believe that the white mountainside was the Ross Ice Shelf, a huge expanse of floating ice derived from the great ice sheets of Antarctica, which was in fact now behind the mountain. As it was little understood, even by experienced polar pilots, Air New Zealand had provided no training for the flight crew on the sector whiteout phenomenon. Consequently, the crew thought they were flying along McMurdo Sound, when they were flying over Lewis Bay in front of Mt. Erebus.

At 12:49 pm, the ground proximity warning system (GPWS) began sounding a warning that the plane was dangerously close to terrain. Although Collins immediately requested go-around power, there was no time to divert the aircraft, and six seconds later the plane crashed into the side of Mount Erebus and disintegrated, instantly killing everyone on board. The accident occurred at 12:50 pm at a position of 77°25′30″S 167°27′30″E and an elevation of 1,467 feet (447 m) AMSL.

McMurdo Station attempted to contact the flight after the crash and informed Air New Zealand headquarters in Auckland that communication with the aircraft had been lost. United States search and rescue personnel were placed on standby.

Rescue and recovery

Initial search and discovery

At 2:00 pm the United States Navy released a situation report stating:

Air New Zealand Flight 901 has failed to acknowledge radio transmissions. ... One LC-130 fixed-wing aircraft and two UH-1N rotary wing aircraft are preparing to launch for SAR effort.

Data gathered at 3:43 pm was added to the situation report, stating that the visibility was 40 miles (64 km). It also stated that six aircraft had been launched to find the flight.

Flight 901 was supposed to arrive back at Christchurch at 6:05 pm for a stopover including refuelling and a crew change before completing the journey back to Auckland. Around 50 passengers were also supposed to disembark at Christchurch. Airport staff initially told the waiting families that it was usual for the flight to be slightly late but, as time went on, it became clear that something was wrong.

At 9:00 pm, about half an hour after the plane would have run out of fuel, Air New Zealand informed the press that it believed the aircraft to be lost. Rescue teams searched along the assumed flight path but found nothing. At 12:55 am the crew of a United States Navy aircraft discovered unidentified debris along the side of Mount Erebus. No survivors could be seen. At around 9:00 am, twenty hours after the crash, helicopters with search parties managed to land on the side of the mountain. They confirmed that the wreckage was that of Flight 901 and that all 237 passengers and 20 crew members had been killed. The DC-10's altitude at the time of the collision was 1,465 ft (445 m).

The vertical stabiliser section of the plane, with the koru logo clearly visible, was found in the snow. Bodies and fragments of the aircraft were flown back to Auckland for identification. The remains of 44 of the victims were not individually identified. A funeral was held for them on 22 February 1980.

Operation Overdue

The recovery effort of Flight 901 was called "Operation Overdue".

Efforts for recovery were extensive, owing in part to the pressure from Japan, as 24 passengers had been Japanese. The operation lasted until 9 December 1979, with up to 60 recovery workers on site at a time. A team of New Zealand Police officers and a Mountain Face Rescue team were dispatched on a No. 40 Squadron C-130 Hercules aircraft.

One of the most difficult SAR operation ever
The job of individual identification took many weeks, and was largely done by teams of pathologists, dentists, and police. The mortuary team was led by Inspector Jim Morgan, who collated and edited a report on the recovery operation. Record keeping had to be meticulous because of the number and fragmented state of the human remains that had to be identified to the satisfaction of the coroner. From a purely technical point of view the exercise was both innovative and highly successful, with 83% of the deceased eventually being identified, sometimes from evidence such as a finger capable of yielding a print, or keys in a pocket.

The fact that we all spent about a week camped in polar tents amid the wreckage and dead bodies, maintaining a 24-hour work schedule says it all. We split the men into two shifts (12 hours on and 12 off), and recovered with great effort all the human remains at the site. Many bodies were trapped under tons of fuselage and wings and much physical effort was required to dig them out and extract them.

Initially, there was very little water at the site and we had only one bowl between all of us to wash our hands in before eating. The water was black. In the first days on site we did not wash plates and utensils after eating but handed them on to the next shift because we were unable to wash them. I could not eat my first meal on site because it was a meat stew. Our polar clothing became covered in black human grease (a result of burns on the bodies).

We felt relieved when the first resupply of woollen gloves arrived because ours had become saturated in human grease, however, we needed the finger movement that wool gloves afforded, i.e., writing down the details of what we saw and assigning body and grid numbers to all body parts and labelling them. All bodies and body parts were photographed in situ by U.S. Navy photographers who worked with us. Also, U.S. Navy personnel helped us to lift and pack bodies into body bags which was very exhausting work.

Later, the Skua gulls were eating the bodies in front of us, causing us much mental anguish as well as destroying the chances of identifying the corpses. We tried to shoo them away but to no avail, we then threw flares, also to no avail. Because of this we had to pick up all the bodies/parts that had been bagged and create 11 large piles of human remains around the crash site in order to bury them under snow to keep the birds off. To do this we had to scoop up the top layer of snow over the crash site and bury them, only later to uncover them when the weather cleared and the helos were able to get back on the site. It was immensely exhausting work.

After we had almost completed the mission, we were trapped by bad weather and isolated. At that point, NZPO2 and I allowed the liquor that had survived the crash to be given out and we had a party (macabre, but we had to let off steam). We ran out of cigarettes, a catastrophe that caused all persons, civilians and Police on site, to hand in their personal supplies so we could dish them out equally and spin out the supply we had. As the weather cleared, the helos were able to get back and we then were able to hook the piles of bodies in cargo nets under the helicopters and they were taken to McMurdo. This was doubly exhausting because we also had to wind down the personnel numbers with each helo load and that left the remaining people with more work to do. It was exhausting uncovering the bodies and loading them and dangerous too as debris from the crash site was whipped up by the helo rotors. Risks were taken by all those involved in this work. The civilians from McDonnell Douglas, MOT and U.S. Navy personnel were first to leave and then the Police and DSIR followed. I am proud of my service and those of my colleagues on Mount Erebus.
Jim Morgan

In 2006 the New Zealand Special Service Medal (Erebus) was instituted to recognise the service of New Zealanders, and citizens of the United States of America and other countries, who were involved in the body recovery, identification, and crash investigation phases of Operation Overdue. On 5 June 2009 the New Zealand government recognised some of the Americans who assisted in Operation Overdue during a ceremony in Washington, D.C. A total of 40 Americans, mostly Navy personnel, are eligible to receive the medal.

Accident inquiries

Believed to be the only photo left showing the impact
Despite Flight 901 crashing in one of the most isolated parts of the world, evidence from the crash site was extensive. Both the cockpit voice recorder and the flight data recorder were in working order and able to be deciphered. Extensive photographic footage from the moments before the crash was available: being a sightseeing flight, most passengers were carrying cameras, from which the majority of the film could be developed.

Official accident report

The accident report compiled by New Zealand's chief inspector of air accidents, Ron Chippindale, was released on 12 June 1980. It cited pilot error as the principal cause of the accident and attributed blame to the decision of Collins to descend below the customary minimum altitude level, and to continue at that altitude when the crew was unsure of the plane's position. The customary minimum altitude prohibited descent below 6,000 ft (1,830 m) even under good weather conditions, but a combination of factors led the captain to believe the plane was over the sea (the middle of McMurdo Sound and few small low islands), and previous flight 901 pilots had regularly flown low over the area to give passengers a better view, as evidenced by photographs in Air New Zealand's own travel magazine and by first-hand accounts of personnel based on the ground at NZ's Scott Base.

Mahon Inquiry

Justice Peter Mahon
In response to public demand, the New Zealand Government announced a further one-man Royal Commission of Inquiry into the accident, to be performed by the highly respected judge Justice Peter Mahon.

Mahon's report, released on 27 April 1981, cleared the crew of blame for the disaster. Mahon said the single, dominant and effective cause of the crash was Air New Zealand's alteration of the flight plan waypoint coordinates in the ground navigation computer without advising the crew. The new flight plan took the aircraft directly over the mountain, rather than along its flank. Due to whiteout conditions, "a malevolent trick of the polar light", the crew were unable to visually identify the mountain in front of them. Furthermore, they may have experienced a rare meteorological phenomenon called sector whiteout, which creates the visual illusion of a flat horizon far in the distance (it appeared to be a very broad gap between cloud layers allowing a view of the distant Ross Ice Shelf and beyond). Mahon noted that the flight crew, with many thousands of hours of flight time between them, had considerable experience with the extreme accuracy of the aircraft's inertial navigation system. Mahon also found that the radio communications centre at McMurdo Station had authorised Collins to descend to 1,500 ft (450 m), below the minimum safe level.

In para. 377 of his report, Mahon controversially claimed airline executives and senior (management) pilots engaged in a conspiracy to whitewash the inquiry, accusing them of "an orchestrated litany of lies" by covering up evidence and lying to investigators. Mahon found that in the original report Chippindale had a poor grasp of the flying involved in jet airline operation, as he (and the New Zealand CAA in general) was typically involved in investigating simple light aircraft crashes. Chippindale's investigation techniques were revealed as lacking in rigour, which allowed errors and avoidable gaps in knowledge to appear in reports. Consequently Chippindale entirely missed the importance of the flight plan change and the rare meteorological conditions of Antarctica. Had the pilots been informed of the flight plan change, the crash would have been avoided.

Court proceedings

Judicial review

On 20 May 1981, Air New Zealand applied to the High Court of New Zealand for judicial review of Mahon's order that it pay more than half the costs of the Mahon Inquiry, and for judicial review of some of the findings of fact Mahon had made in his report. The application was referred to the Court of Appeal, which unanimously set aside the costs order. However, the Court of Appeal, by majority, declined to go any further, and, in particular, declined to set aside Mahon's finding that members of the management of Air New Zealand had conspired to commit perjury before the Inquiry to cover up the errors of the ground staff.

Privy Council appeal

Mahon then appealed to the Privy Council in London against the Court of Appeal's decision. His findings as to the cause of the accident, namely reprogramming of the aircraft's flight plan by the ground crew who then failed to inform the flight crew, had not been challenged before the Court of Appeal, and so were not challenged before the Privy Council. His conclusion that the crash was the result of the aircrew being misdirected as to their flight path, not due to pilot error, therefore remained. But the Privy Council effectively agreed with some of the views of the minority in the Court of Appeal in concluding that Mahon had acted in breach of natural justice in making his finding of a conspiracy by Air New Zealand management. In its judgment, delivered on 20 October 1983, the Privy Council therefore dismissed Mahon's appeal. Aviation researcher John King wrote in his book New Zealand Tragedies, Aviation:

They demolished his case (Mahon's case for a cover-up) item by item, including Exhibit 164 which they said could not "be understood by any experienced pilot to be intended for the purposes of navigation" and went even further, saying there was no clear proof on which to base a finding that a plan of deception, led by the company's chief executive, had ever existed.

"Exhibit 164" was a photocopied diagram of McMurdo Sound showing a southbound flight path passing west of Ross Island and a northbound path passing the island on the east. The diagram did not extend sufficiently far south to show where, how, or even if they joined, and left the two paths disconnected. Evidence had been given to the effect that the diagram had been included in the flight crew's briefing documentation.

Legacy of the disaster

The crash of Flight 901 is one of New Zealand's three deadliest disasters – the others being the Cospatrick disaster in which 470 people died, and the 1931 Hawke's Bay earthquake, which killed 256 people. At the time of the disaster, it was the fourth-deadliest air crash of all time; as of 2014 it ranks 18th. At October 2009, the accident remained New Zealand's deadliest peacetime disaster.

Flight 901, in conjunction with the crash of American Airlines Flight 191 in Chicago six months earlier, severely hurt the reputation of the McDonnell Douglas DC-10. ZK-NZP, along with the other seven Air New Zealand DC-10s, had only just returned to service after being grounded following the crash of Flight 191 when the crash of Flight 901 occurred. Flight 901 was the third deadliest accident involving a DC-10, following Turkish Airlines Flight 981 and American Airlines Flight 191. The event marked the beginning of the end for Air New Zealand's DC-10 fleet, although there had been talk before the accident of replacing the aircraft; DC-10s were replaced by Boeing 747s from mid-1981, and the last Air New Zealand DC-10 flew in December 1982. The occurrence also spelled the end of commercially operated Antarctic sightseeing flights – Air New Zealand cancelled all its Antarctic flights after Flight 901, and Qantas suspended its Antarctic flights in February 1980, only returning on a limited basis again in 1994.

Almost all of the aircraft's wreckage still lies where it came to rest on the slopes of Mount Erebus, under a layer of snow and ice. During warm periods, when snow recedes, it is visible from the air.

A television miniseries, Erebus: The Aftermath, focusing on the investigation and the Royal Commission of Inquiry, was broadcast in New Zealand and Australia in 1988.

The phrase "an orchestrated litany of lies" entered New Zealand popular culture for some years.

Justice Mahon's report was finally tabled in Parliament by the then Minister of Transport, Maurice Williamson, in 1999.

Cpt Gordon Vette
In the New Zealand Queen's Birthday Honours list in June 2007 Captain Gordon Vette was awarded the ONZM (Officer of the New Zealand Order of Merit), recognising his services in assisting Justice Mahon during the Erebus Inquiry. Vette's book, Impact Erebus, provides a commentary of the flight, its crash and the subsequent investigations.

In 2008, Justice Mahon was posthumously awarded the Jim Collins Memorial Award by the New Zealand Airline Pilots Association for exceptional contributions to air safety, "in forever changing the general approach used in transport accidents investigations world wide."

In 2009, Air New Zealand's CEO Rob Fyfe apologised to all those affected who did not receive appropriate support and compassion from the company following the incident, and unveiled a commemorative sculpture at its headquarters.

The registration of the crashed aircraft, ZK-NZP, has not been reissued.


Junkers Ju-52/3m

Korabeli, egymotoros változat // D-1974
A Junkers Ju-52 egy egyfedelű, eredetileg egy-, később hárommotoros az 1930-as években szolgálatba állított szállító/utasszállító repülőgép. Az 1920-as évek végén tervezte meg a Junkers repülőgépgyár a mára világszerte ismertté vált hullámlemez borítású repülőgépet. A gép a Tante Ju (Ju néni) gúnynevet kapta. Első repülését 1930. október 13-án teljesítette, 1931-ben mutatták be a nagyközönségnek, a gyártás 1932 és 1945 között folyt. Már ekkor hadrendbe állt több légierőnél és jóval több, mint egy tucat légitársaság alkalmazta. Eredeti konfigurációjában egy BMW vagy Junkers motorral építették, a gép erőtlen volt. Később bebizonyosodott a három motor előnye, ettől kezdve a hárommotoros Ju-52/3m gyártása folyt. A gépeket nagyrészt BMW motororral szerelték, az exportmodellekbe Pratt & Whitney Wasppal és Bristol Pegasus motor is került. A három motorral jelentősen javultak a gép tulajdonságai. Először a Spanyol polgárháborúban vetették be, később részt vett Lengyelország lerohanásában és a Luftwaffe egyéb háborús műveleteiben. Nagyon sebezhető volt, a korabeli vadászgépek sebességének felével repült. Sok gép esett a vadászgépek és a légvédelem áldozatául. A világháború után pályafutása tovább folytatódott a légitársaságoknál és a légierőknél. A Svájci légierő az 1980-as évek elejéig szolgálatban tartotta, napjainkban még több példány repülőképes. A szabványos rögzített futóműves verzión kívül készült hidroplánverzió is. Alkalmazták szállításra, utas szállításra, bombázásra, aknaszedésre és sok egyéb feladatra. 1945 után Spanyolországban CASA 352 típusmegjelöléssel gyártották.

A MALERT HA-JUA lajstromú Ju-52-ese Budaörsön
1942 és 1944 közt licencgyártással Magyarországon is gyártották a Pestszentlőrinci Ipartelepek Rt.-nél. A magyar gyártású változat eltért a szériaváltozattól, a törzs hátsó részén, felül, egy körsínen egy, továbbá az oldalablakokban két géppuskát helyeztek el. A pilóta és a lövész védelmére páncélzat szolgált. Az ejtőernyős alakulatok számára a szárnyakon ledobható ejtőernyős-konténereket helyeztek el, a törzs jobb oldalán nagyméretű rakodóajtót alakítottak ki.
Magyarországon a katonaság és a Magyar Légiforgalmi Rt. (MALERT) színeiben repült. A magyar légierő 1954-ben rendszeresítette a típust közepes szállítógép szerepében. Ezek a repülőgépek polgári használatból, a MALERT-től kerültek a légierőhöz.

Technikai jellemzők

Rendeltetés: szállító, utasszállító
Hossz: 18,90 m
Fesztáv: 29.25 m
Magasság: 4,52 m
Szárnyfelület: 110,5 m2
Szerkezeti tömeg: 6,510 kg
Max. felsz. tömeg: 10,990 kg
Motor: 3 db. BMW 132T 9 hengeres csillagmotor 715 lóerővel
Max. sebesség: 265 km/h
Utazó sebesség: 211 km/h
Hatótáv: 1,100 km
Csúcsmagasság: 6,000 m
Fegyverzet: 1 db 13 mm-es MG 131 géppuska, 2 db. 7,92 mm-es MG 15 géppuska, 455 kg bomba


Repülőgépgyártás a Pestszentlőrinci Ipartelepek R.T. vállalkozás keretében 1942-44-ben

Az első világháborút követő években a német Hugo Junkers által alapított repülőgépgyár kiemelkedő eredményeket mutatott az utasszállító repülőgépek fejlesztése és fémszerkezetű kivitelben történő sorozatgyártása területén. Ez a fejlesztés saját aerodinamikai és statikai kísérleti részlegére alapozva folyt, aminek eredményeként 1930-ra sikerült a formai és szilárdsági igényeknek megfelelő legkedvezőbb kompromisszumot megtalálniuk egy nagy befogadóképességű szállítórepülőgép kialakítására.

BMW-csillagmotorokkal szerelt Ju-52
A Junkers Ju-52 szállítórepülőgép hullámlemez borítású fémszerkezetű sárkánya közel 30m fesztávolságú, erősen keskenyedő trapéz szárnyával, nagy befogadóképességű belső törzskialakítással és a Junkers-féle réshatásra épített kormányszerveivel adta ezt a legjobb megoldást. Ez időben Németországban problémát jelentett egy ilyen nagy, két tonna hasznos teherbírású repülőgéphez a megfelelő hajtómű megtalálása. Junkers saját gyártású L88 típusú 12 hengeres, 800LE-s (650kW-os) motorját építette az első elkészült öt gép orrába. A gépek ezzel az egy motorral is már kiválónak mutatkoztak az előírt teherszállítási feladatra. A Lufthansa azonban a személyszállításnál -biztonsági megfontolásokból- a 3 motor alkalmazásához ragaszkodott. Szerencsére a BMW gyár erre az időre már berendezkedett az amerikai Pratt & Whitney Hornet 680LE-s (kb. 500kW-os) könnyű, léghűtéses csillagmotorjának licenciagyártására, így a sorozatban gyártott mintegy 350db személyszállító Ju-52/3m gépbe már három ilyen BMW-132A motor kerülhetett beépítésre. Ezekből 231db került a Lufthansa szolgálatába, a többit már a német légierő szállító- és bombázókiképző alakulataihoz került 1933-tól.

A korabeli festések legszakavatottabb ismerői a modellezők
A Junkers Ju-52/3m típusú repülőgép a megrendelők kívánságára több változatban is épült, így a típusmeghatározás gyári módja szerint a 17 utasüléses standard Luthansa-változat (jele: Ju-52/3mp3e) után az egyes kiemelkedő társadalmi személyiségek -mint pl. Bibesco herceg, az FAI főtitkára, Horthy Miklós kormányzó és a német állam vezetői- részére a luxuskabinos kialakításban, tárgyalótermet Ju-52/3mg4e változatban is gyártották. A változatok között volt teherszállító, csapatszállító, repülőtanterem, szállítóvitorlázó-vontató, ellátmányledobó, stb. Mind speciális felszereléssel és igény szerinti motor- ill. légcsavarkialakításokkal, futóművekkel, úszókkal, sítalpakkal stb. épült.

Hazánkban a repülőgéptípust 1936-tól használták, amikor a felajánlott német hadfelszerelési hitel terhére egy termes kivitelű (HA-DUR jelű) és két légiforgalmi változatú (HA-JUA és HA-JUB jelű) Ju-52/3m gépet rendeltek, ill. két magyar pilótának a gépre történő teljes kiképzését biztosították. A két magyar pilóta, Krudy Ádám és Timár Gyula főhadnagyok még ebben az évben megkapták kiképzésüket Berlin-Tempelhof repülőtéren és az Askanie műszerüzemben a géptípussal történő rádióirányítású és teljes műszerrepülő (vakrepülő) feladatkörre.

1939-ben és 1940-ben újabb 2-2 repülőgép megrendelése történt, mégpedig két standard személyszállító, kettő pedig rövidebb futószárú, kiskerekű futóművel és erősebb BMW-132L motorokkal, állítható légcsavarokkal, és ezeknek megfelelően nagyobb utazósebességgel. Érdekessége ezeknek a megrendeléseknek, hogy még 1940-ben is 1400 USA-dollárt kellett a BMW (Hornet-licencia) motoronként külön fizetni az anyagyárnak. A Junkers-gyár egyben közölte, hogy a típus gyártását beszünteti, és további megrendelést már nem fogad el.

Ez a közlés lesújtó volt a HM részére is, mert az ejtőernyős alakulat szállítórepülőgép-igénye éppen ebben az időben égető sürgősséggel jelentkezett. Az átmeneti megoldásként használt Caproni Ca-101 és Savoia SM-75 szállítórepülőgép nem váltották be a hozzájuk fűzött reményeket, más olasz típust pedig nem tudtak ez időben ajánlani.

1941-re azonban a németek helyzete is megváltozott, a második világháború eddigi harcaiban sok szállítórepülőgép veszett el, és az afrikai valamint szovjet hadszíntér óriásira növelte az e téren jelentkező igényt. A leállított Junkers gyártása helyett sürgősen partnereket kellett keresni. Mivel Junkers és a többi német repülőgépüzem is a harci repülőgépek gyártásával és fejlesztésével volt lekötve, elsősorban a megszállt Franciaország és a még intakt Magyarország bekapcsolása jött számításba.

Az 1941. évi német-magyar repülőgépgyártási együttműködési megállapodás kiegészítéseként már 1942. elején megállapodás történt a Ju-52/3mgl4e változatú, megerősített fegyverzetű és felszerelésű szállítórepülőgépek magyarországi összeszerelésére, majd fokozatosan a fődarabok gyártásának megvalósítására is.

Ugyanakkor a megtartott hitelfedezetek ellenőzéséből kiderült, hogy 636 millió pengő póthitelre van szükség még 100db Héja vadászgép, valamint a tervezett 5 szállítórepülőgép-század részére készülő 60db Ju-52 gép hazai előállításához és az ehhez szükséges repülőtéri létesítmények megvalósításához. A HM ezt azonnal biztosította.

A második ejtőernyős-zászlóalj szervezésével kapcsolatos egyik jelentésből az is kiderült, hogy 1943 végére számoltak az első hazai összeállításból származó Ju-52 gépekkel a Légierőknél.

A részvénytársaság formai megalakulása után javaslatot kértek a Műegyetem Aerotechnikai Intézetétől műszaki igazgató személyére. Ennek alapján dr. Lettner Ferenc okl. gépészmérnök, műegyetemi tanársegéd kapott kinevezést, aki részt vett az intézet több repülőgéptervezési munkájában, és ez időben Székesfehérvár-Sóstón a fémhéj szerkezetű X/H kísérleti rombolórepülőgép építését irányította. (1932 óta a légierő III. fokú pilótavizsgát tett tartalékos tisztje volt.) Az általa adott jelentések nyújtanak képet a Pestszentlőrinci Ipartelepek Rt. repülőgépgyártási helyzetéről és az ez ügyben tett intézkedésekről.

A nagy szerelőcsarnok és az azt kiszolgáló üzemrészek, az egykori Pestszentlőrinci Fonó- és Szövőgyár területén, a Ferihegyi repülőtérre vezető út mentén létesültek. Így a könnyen szerelhető kész Ju-52 gépek törzse, szárnyai és törzsvég-kormánysík rendszere gépkocsin vagy vasúton kigördíthető volt a repülőtérre. A Ju-52 gép konstrukciós adottságai e téren is kiemelkedőek voltak, mert eleve számoltak a vasúti szállítás lehetőségével is, és így ezek a fő részek 5-8 csavar segítségével oldható kötésben csatlakoztak.

A gyár jelentéseinek egy része mutatja a gyártás helyzetének alakulását.

Jelentés 1943. máj. 13-án az építés helyzetéről:

"A nagy szerelőcsarnoknak április közepére kellett volna készen lennie. Ebben 8-10 heti késedelem van. Szerszámgépekből német közlés szerint 140-nek kellett volna beérkeznie, a mai napig csak 79 jött. Szerszámok, szerszámrajzok hiánya is késlelteti a gyártást. Hiány van szerszámkészítő munkásokban.

Repülőgépalkatrészekből beérkezett eddig 20 komplett kormánymű. A szárnyból és törzsből eddig anyagot még nem kaptunk, a terv szerint ezek szállítását április közepén meg kellett volna kezdeni.

Munkáshelyzet: Saját üzemünkben kiképzett munkás 450 fő. Németországban kiképzett munkás 320 fő. Németországban kiképzésen van még munkás 130 fő. Munkáshiány jelenleg nincs."

Jelentés 1943. jún. 1-jén:

"Szerszámok és készülékek nagy részét nekünk kell megszerkeszteni, de nincs hozzá szakember."

Jelentés 1943. júl. 20-án:

"A Ferihegyi repülőtér forgalmi hangárjában fele alapterületen a PIRT berendezkedett az ideérkező új Ju-52 gépek készreszerelésére, a hangár másik fele a védelmi vadászosztály rendelkezésére áll. A meglévő munkahelyiségek és irodák 60%-át a vadászosztály, 20%-át a PIRT, a többit még az építésvezetőség használja.

A MALERT-nél vizsgázott Piufsich Gábor I. o. forgalmi pilóta a PIRT állományába lépett, mint Ju-52 berepülő főpilóta."

Jelentés 1943. júl. 23-án:

"A szerelőcsarnok építése a módosított terv szerint folyik, középső részében megkezdtük a szerelőkészülékek felállítását. A lemezmegmunkáló gépek viszont Németországból még mindig nem jöttek meg.

Repülőgép-alkatrészekből: A terv szerint eddig be kellett volna érkezni Németországból 50 teljes kormányműnek, 20-20 komplett szárnynak és törzsnek. Ezekből csak 10-10 darab jött. A terv szerint július végéig el kellene készülnie legalább 7 teljes kormánymű-készletnek. A valóságban azonban 12 magassági vezérsík, de csak 7 csűrő (14 helyett). 7 fékszárny (14 helyett), 7 oldalkormány, 7 függőleges vezérsík és 2 magassági kormány (14 helyett) fog erre az időre készen állni."

Jelentés 1943. okt. 2-án:

"Az első, teljesen Németországból érkezett anyagokból, alkatrészekből és szerelvényekből összeszerelt gépet az itthoni berepülések és próbák után Németországba vizsgálatokra kiszállították."

A Repülő Átvételi Bizottság (RÁB) PIRT Kirendeltsége 1943. nov. 22-én jelenti:

"A mintagép alapján a Ju-52/3m14e PIRT szerelésű repülőgépből 260 darabra van megrendelés. (Szállítás kezdete 1944-ben.)

Tekintve, hogy a kész gép gyártása csak most kezdődik, és az elmúlt három hónap alatt egy mintagépet és 30 komplett kormányművet tudtak Németországba szállítani, a havi felfutást a következők szerint tervezik:

1944. I. hó 1 gép, V. hó 3 gép, IX. hó 9 gép
1944 II. hó 1 gép, VI. hó 6 gép, X. hó 13 gép
1944. III. hó 3 gép, VII. hó 6 gép, XI. hó 15 gép
1944. IV. hó 3 gép, VIII. hó 7 gép, XII. hó 15 gép
Vagyis 1944-ben 82 kész gép összesen.

Jelenleg a sorozatgyártás előtti két teljes gép készítése határidő szerint folyik, és azokat az RKI és RLM mint 0-széria gépeket veszi vizsgálat alá.

A sorzatgyártás előkészületi helyzete: a sorozathoz szükséges alkatrészek gyártását már májusban el kellett volna kezdeni, de ez csak augusztus közepén vált lehetségessé. Az első hazai gyártású szériagép így határidőre aligha fog elkészülni. Lemezmegmunkáló gépek Németországból még mindig nem jöttek. Az összes 293db szerszámgépből eddig csak 206db érkezett be.
Munkáshelyzet: Minimum heti 60 új szakképzetlen munkást kell felvenni kiképzés végett. Az Ipari Minisztérium eddig csak egy 70 éves embert tudott adni. Sok munkást behívnak."

Jelentés 1944. jan. 28-ról:

"Az első 150 géphez 100%-ban Németország adja az alkatrészeket, a további 110 géphez 90%-ban Németország, 10%-ban Magyarország (alumínium anyagot és könnyűfém félgyártmányokat). Az első 150db gép anyagának kb. 30%-a Németországból már beérkezett. A további 110 gép anyaga júl. 1-től lesz esedékes."

Jelentés 1944. júl. 8-án:

"Újabb 100 Ju-52 gépre érkezett megrendelés a gyárhoz. Az új megrendelés gépeinek szállítását 1945 márciusától kell megkezdeni, a következő évi ütemezésben:

1945. III. hó 1 gép VI. hó 2 gép IX. hó 3 gép
1945. IV. hó 1 gép VII. hó 2 gép X. hó 3 gép
1945. V. hó 1 gép VIII. hó 2 gép XI. hó 4 gép, XII. hó 4 gép
(Összesen 1945-ben pluszként gyártandó: 23db gép.)"

"Eddig Németországba leszállítva 5 gép. A HM részére egy gép átadva, a másik a következő napokban átadásra kerül. Ez a gép ugyanis a július 2-án történt bombatámadásnál Ferihegyen kisebb kárt szenvedett, ennek kijavítása még folyamatban van. A gyárat eddig nem érte bombatámadás.
A bombatámadások várható kárainak megelőzésére a kormányművek gyártását az Aero-Ever esztergomi gyárába telepítettük ki. 46 szerszámgéppel egy üzemrészt Solymár közelébe, egy kiépített bombabiztos aknában helyeztek el. Amint a transzformátorállomás működésbe lép, ezek itt folytatják a termelést. A raktári anyagok Ceglédbercelen és Albertirsán nyertek elhelyezést.
A gyártási program: 13 hét késés van szakmunkások és szerszámgépek hiánya miatt."

A hivatalos jelentéseken túlmenőleg is ismeretes, hogy alkatrészeket gyártottak a szövőgyárak és harisnyagyárak egyes részlegeiben, ahol a teljes műszerfal összeállítása is zajlott a pilótakabin berendezéséhez. Mindez nagyon komoly szállítási és üzemszervezési rendet követelt, amivel sikerült elérni, hogy mindig csak egy-két gép időzött a bombázásnak kitett repülőtéri végszerelésben, és amint összeszerelték, kigurult vagy elrepült kitérő repülőterére. Érdekes megemlíteni, hogy tapasztalt szakemberek sem értették meg ennek fontos hadászati értékét, és nevetve mesélték, hogy Lettner igazgató nem merte beszereltetni az üzemben a kényes műszereket és alkatrészeket, nehogy szállítás közben azok összerázkódjanak. Dr. Lettner Ferenc később a Budapesti Műszaki Egyetem gépgyártás-technológia professzora lett, de szervezőtehetsége már ekkor, a végtermékre koncentrált gyártás és anyagmozgatás területén megnyilvánult.
A PIRT-nél szerelt és fokozatosan hazai gyártásra előkészített, megerősített fegyverzetű és felszerelésű szállítórepülőgép főbb műszaki jellemzői a következők voltak:

Junkers Ju-52/3mgl4e

Fesztávolság: 29,95m
Hossza: 18,90m
Magassága: 5,80m
Üres tömege: 5800kg
Repülőtömege: 10.500kg
Szárnyfelülete: 110,50m2
Motorok: 3x485kW-os BMW 132A (Hornet)
Max. sebessége: 280km/h
Utazósebessége: 240km/h
Leszállósebessége: 101km/h
Csúcsmagassága: 6300m
Repülési táv: 1280km
Személyzete: 4 fő
Nekifutás: 500m
Kigurulás: 300m

A normál változattól lényeges eltérései:

Az utastér fedett ablaknyílásokkal épült, az utolsó ablakok lemeztolással nyithatók 1-1db 8mm-es (Stange) géppuska beépíthetőségre. A törzs hátsó részén felül körsínes, 12,7mm-es nehézgéppuska-állás volt. A géppuskaállásból jelzőkapcsolat volt kiépítve a pilótákhoz. Az utastérbe nagyteljesítményű rádiókészüléket helyeztek, amely miatt a nagyobb méretű keretantenna hátrébb került beépítésre. A megerősített futószerkezet nagyobb átmérőjű kerekekkel, jól áramvonalazott rudazattal épült. Személyzeti ejtőernyőtartályok és ejtőernyők kerültek beszerelésre. A szárnyakon ledobható ellátótartályok külső felfüggesztő készülékei voltak. A törzs jobb oldalán nagyméretű rakodóajtó és nagyméretű beszállóajtó került alkalmazásra. A főpilóta és a lövész testének védelmére védő páncéllapot terveztek, amelyet azonban általában nem szereltek be.

A PIRT szervezett tevékenysége folytán ezeknek a gépeknek a szállítása 1944 közepétől már folyamatosan történt a német és a magyar szállító alakulatokhoz. A szovjet csapatok gyors előretörése 1944. november elején a Ferihegyi repülőtér kiürítését tette szükségessé. Eddig az időpontig kb. 20 repülőgép került átadásra a 102/1. és a 102/2. magyar szállítórepülő századok részére. (Ez utóbbi volt a MALERT személyzetéből szervezett szállítórepülőszázad.) Ezt igazolja, hogy a korabeli jelentésekben az S-202-től az S-222-ig terjedő gépjelzésekkel találkozhattunk.

A tervezett német szállításból kb. 50 repülőgép kerülhetett teljesítésre. A PIRT teljes szerelési munkája 70 repülőgépre tehető. Az utolsó gépek szerelését azonban már részben Budaörsön, részben a csákvári kitérő repülőtér tábori szerelőüzemében fejezték be.


[Special liveries] WOW Air A321-200 'Freyja'

The Air Operator Certificate (AOC)

An air operator's certificate (AOC) is the approval granted by a national aviation authority (NAA) to an aircraft operator to allow it to use aircraft for commercial purposes. This requires the operator to have personnel, assets and system in place to ensure the safety of its employees and the general public. The certificate will list the aircraft types and registrations to be used, for what purpose and in what area - specific airports or geographic region.

The requirements for obtaining an AOC vary from country to country, but are generally defined as:
  • Sufficient personnel with the required experience for the type of operations requested,
  • Airworthy aircraft, suitable for the type of operations requested,
  • Acceptable systems for the training of crew and the operation of the aircraft (Operations Manual)
  • A quality system to ensure that all applicable regulations are followed,
  • The appointment of key accountable staff, who are responsible for specific safety critical functions such as training, maintenance and operations,
  • Carriers Liability Insurance (for Airlines) - Operators are to have sufficient insurance to cover the injury or death of any passenger carried.
  • Proof that the operator has sufficient finances to fund the operation
  • The operator has sufficient ground infrastructure, or arrangements for the supply of sufficient infrastructure, to support its operations into the ports requested.
  • The certificate is held by a legal person who resides in the country or region of application (for EASA)

Icelandair's Operations Specifications ("subject to the approved conditions in the Operations Manual") issued by the Icelandic Transport Authority (Samgöngustofa) in 2014:


[Special liveries] Brussels Airlines A320-200 'Rackham'

Aircraft Owner's and Operator's Guide: B747-200/-300

Aicraft Commerce (2005 June-July)

[Featured spotter] Sam Chui air-to-air photography from LAX

Aer Lingus A330-200 // EI-LAX
Southwest Airlines B737
United Airlines A320-200 // N403UA
Emirates B777-200LR // A6-EWC
China Eastern Airlines A340-600 // B-6055
Delta Airlines B777-200 // N865DA
Korean Air A380-800 // HL7612
Air Canada A320-200 // C-FNNA
Cathay Pacific B747-400 // 9V-SPD
Virgin Atlantic B747-400 // G-VHOT
British Aiways B747-400 // G-BNLK
Nippon Cargo Airlines B747-200F(SCD) // JA8181
Japan Airlines B747-400 // JA8085
KLM B747-400 // PH-BFL
Singapore Airlines B747-400 // 9V-SPO
Lufthansa B747-400 // D-ABVH
Delta Airlines B747-400 // N676NW
United Airlines B747-400 // N121UA
Related Posts Plugin for WordPress, Blogger...